Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Set theoretical Representations of Integers, I (0801.0353v1)

Published 2 Jan 2008 in math.LO and cs.CC

Abstract: We reconsider some classical natural semantics of integers (namely iterators of functions, cardinals of sets, index of equivalence relations), in the perspective of Kolmogorov complexity. To each such semantics one can attach a simple representation of integers that we suitably effectivize in order to develop an associated Kolmogorov theory. Such effectivizations are particular instances of a general notion of "self-enumerated system" that we introduce in this paper. Our main result asserts that, with such effectivizations, Kolmogorov theory allows to quantitatively distinguish the underlying semantics. We characterize the families obtained by such effectivizations and prove that the associated Kolmogorov complexities constitute a hierarchy which coincides with that of Kolmogorov complexities defined via jump oracles and/or infinite computations. This contrasts with the well-known fact that usual Kolmogorov complexity does not depend (up to a constant) on the chosen arithmetic representation of integers, let it be in any base unary, binary et so on. Also, in a conceptual point of view, our result can be seen as a mean to measure the degree of abstraction of these diverse semantics.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.