Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Refinment of the "up to a constant" ordering using contructive co-immunity and alike. Application to the Min/Max hierarchy of Kolmogorov complexities (0801.0350v1)

Published 2 Jan 2008 in math.LO and cs.CC

Abstract: We introduce orderings between total functions f,g: N -> N which refine the pointwise "up to a constant" ordering <=cte and also insure that f(x) is often much less thang(x). With such orderings, we prove a strong hierarchy theorem for Kolmogorov complexities obtained with jump oracles and/or Max or Min of partial recursive functions. We introduce a notion of second order conditional Kolmogorov complexity which yields a uniform bound for the "up to a constant" comparisons involved in the hierarchy theorem.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.