Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Effective symbolic dynamics, random points, statistical behavior, complexity and entropy (0801.0209v2)

Published 31 Dec 2007 in math.DS, cs.IT, math.IT, and math.PR

Abstract: We consider the dynamical behavior of Martin-L\"of random points in dynamical systems over metric spaces with a computable dynamics and a computable invariant measure. We use computable partitions to define a sort of effective symbolic model for the dynamics. Through this construction we prove that such points have typical statistical behavior (the behavior which is typical in the Birkhoff ergodic theorem) and are recurrent. We introduce and compare some notions of complexity for orbits in dynamical systems and prove: (i) that the complexity of the orbits of random points equals the Kolmogorov-Sina\"i entropy of the system, (ii) that the supremum of the complexity of orbits equals the topological entropy.

Citations (55)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.