Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An axiomatic approach to intrinsic dimension of a dataset (0712.2063v1)

Published 12 Dec 2007 in cs.IR

Abstract: We perform a deeper analysis of an axiomatic approach to the concept of intrinsic dimension of a dataset proposed by us in the IJCNN'07 paper (arXiv:cs/0703125). The main features of our approach are that a high intrinsic dimension of a dataset reflects the presence of the curse of dimensionality (in a certain mathematically precise sense), and that dimension of a discrete i.i.d. sample of a low-dimensional manifold is, with high probability, close to that of the manifold. At the same time, the intrinsic dimension of a sample is easily corrupted by moderate high-dimensional noise (of the same amplitude as the size of the manifold) and suffers from prohibitevely high computational complexity (computing it is an $NP$-complete problem). We outline a possible way to overcome these difficulties.

Citations (50)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.