Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reconstruction of Markov Random Fields from Samples: Some Easy Observations and Algorithms (0712.1402v2)

Published 10 Dec 2007 in cs.CC and cs.LG

Abstract: Markov random fields are used to model high dimensional distributions in a number of applied areas. Much recent interest has been devoted to the reconstruction of the dependency structure from independent samples from the Markov random fields. We analyze a simple algorithm for reconstructing the underlying graph defining a Markov random field on $n$ nodes and maximum degree $d$ given observations. We show that under mild non-degeneracy conditions it reconstructs the generating graph with high probability using $\Theta(d \epsilon{-2}\delta{-4} \log n)$ samples where $\epsilon,\delta$ depend on the local interactions. For most local interaction $\eps,\delta$ are of order $\exp(-O(d))$. Our results are optimal as a function of $n$ up to a multiplicative constant depending on $d$ and the strength of the local interactions. Our results seem to be the first results for general models that guarantee that {\em the} generating model is reconstructed. Furthermore, we provide explicit $O(n{d+2} \epsilon{-2}\delta{-4} \log n)$ running time bound. In cases where the measure on the graph has correlation decay, the running time is $O(n2 \log n)$ for all fixed $d$. We also discuss the effect of observing noisy samples and show that as long as the noise level is low, our algorithm is effective. On the other hand, we construct an example where large noise implies non-identifiability even for generic noise and interactions. Finally, we briefly show that in some simple cases, models with hidden nodes can also be recovered.

Citations (155)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.