Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation Algorithms for Orienteering with Time Windows (0711.4825v1)

Published 29 Nov 2007 in cs.DS

Abstract: Orienteering is the following optimization problem: given an edge-weighted graph (directed or undirected), two nodes s,t and a time limit T, find an s-t walk of total length at most T that maximizes the number of distinct nodes visited by the walk. One obtains a generalization, namely orienteering with time-windows (also referred to as TSP with time-windows), if each node v has a specified time-window [R(v), D(v)] and a node v is counted as visited by the walk only if v is visited during its time-window. For the time-window problem, an O(\log \opt) approximation can be achieved even for directed graphs if the algorithm is allowed quasi-polynomial time. However, the best known polynomial time approximation ratios are O(\log2 \opt) for undirected graphs and O(\log4 \opt) in directed graphs. In this paper we make some progress towards closing this discrepancy, and in the process obtain improved approximation ratios in several natural settings. Let L(v) = D(v) - R(v) denote the length of the time-window for v and let \lmax = \max_v L(v) and \lmin = \min_v L(v). Our results are given below with \alpha denoting the known approximation ratio for orienteering (without time-windows). Currently \alpha = (2+\eps) for undirected graphs and \alpha = O(\log2 \opt) in directed graphs. 1. An O(\alpha \log \lmax) approximation when R(v) and D(v) are integer valued for each v. 2. An O(\alpha \max{\log \opt, \log \frac{\lmax}{\lmin}}) approximation. 3. An O(\alpha \log \frac{\lmax}{\lmin}) approximation when no start and end points are specified. In particular, if \frac{\lmax}{\lmin} is poly-bounded, we obtain an O(\log n) approximation for the time-window problem in undirected graphs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Chandra Chekuri (66 papers)
  2. Nitish Korula (12 papers)
Citations (16)

Summary

We haven't generated a summary for this paper yet.