Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximation Algorithms for Orienteering with Time Windows (0711.4825v1)

Published 29 Nov 2007 in cs.DS

Abstract: Orienteering is the following optimization problem: given an edge-weighted graph (directed or undirected), two nodes s,t and a time limit T, find an s-t walk of total length at most T that maximizes the number of distinct nodes visited by the walk. One obtains a generalization, namely orienteering with time-windows (also referred to as TSP with time-windows), if each node v has a specified time-window [R(v), D(v)] and a node v is counted as visited by the walk only if v is visited during its time-window. For the time-window problem, an O(\log \opt) approximation can be achieved even for directed graphs if the algorithm is allowed quasi-polynomial time. However, the best known polynomial time approximation ratios are O(\log2 \opt) for undirected graphs and O(\log4 \opt) in directed graphs. In this paper we make some progress towards closing this discrepancy, and in the process obtain improved approximation ratios in several natural settings. Let L(v) = D(v) - R(v) denote the length of the time-window for v and let \lmax = \max_v L(v) and \lmin = \min_v L(v). Our results are given below with \alpha denoting the known approximation ratio for orienteering (without time-windows). Currently \alpha = (2+\eps) for undirected graphs and \alpha = O(\log2 \opt) in directed graphs. 1. An O(\alpha \log \lmax) approximation when R(v) and D(v) are integer valued for each v. 2. An O(\alpha \max{\log \opt, \log \frac{\lmax}{\lmin}}) approximation. 3. An O(\alpha \log \frac{\lmax}{\lmin}) approximation when no start and end points are specified. In particular, if \frac{\lmax}{\lmin} is poly-bounded, we obtain an O(\log n) approximation for the time-window problem in undirected graphs.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.