Papers
Topics
Authors
Recent
2000 character limit reached

Prediction for discrete time series (0711.0471v1)

Published 3 Nov 2007 in math.PR, cs.IT, and math.IT

Abstract: Let ${X_n}$ be a stationary and ergodic time series taking values from a finite or countably infinite set ${\cal X}$. Assume that the distribution of the process is otherwise unknown. We propose a sequence of stopping times $\lambda_n$ along which we will be able to estimate the conditional probability $P(X_{\lambda_n+1}=x|X_0,...,X_{\lambda_n})$ from data segment $(X_0,...,X_{\lambda_n})$ in a pointwise consistent way for a restricted class of stationary and ergodic finite or countably infinite alphabet time series which includes among others all stationary and ergodic finitarily Markovian processes. If the stationary and ergodic process turns out to be finitarily Markovian (among others, all stationary and ergodic Markov chains are included in this class) then $ \lim_{n\to \infty} {n\over \lambda_n}>0$ almost surely. If the stationary and ergodic process turns out to possess finite entropy rate then $\lambda_n$ is upperbounded by a polynomial, eventually almost surely.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.