Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Faster Algorithms for Online Topological Ordering (0711.0251v1)

Published 2 Nov 2007 in cs.DS

Abstract: We present two algorithms for maintaining the topological order of a directed acyclic graph with n vertices, under an online edge insertion sequence of m edges. Efficient algorithms for online topological ordering have many applications, including online cycle detection, which is to discover the first edge that introduces a cycle under an arbitrary sequence of edge insertions in a directed graph. In this paper we present efficient algorithms for the online topological ordering problem. We first present a simple algorithm with running time O(n{5/2}) for the online topological ordering problem. This is the current fastest algorithm for this problem on dense graphs, i.e., when m > n{5/3}. We then present an algorithm with running time O((m + nlog n)\sqrt{m}); this is more efficient for sparse graphs. Our results yield an improved upper bound of O(min(n{5/2}, (m + nlog n)sqrt{m})) for the online topological ordering problem.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.