Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Codes from Zero-divisors and Units in Group Rings (0710.5893v1)

Published 31 Oct 2007 in cs.IT and math.IT

Abstract: We describe and present a new construction method for codes using encodings from group rings. They consist primarily of two types: zero-divisor and unit-derived codes. Previous codes from group rings focused on ideals; for example cyclic codes are ideals in the group ring over a cyclic group. The fresh focus is on the encodings themselves, which only under very limited conditions result in ideals. We use the result that a group ring is isomorphic to a certain well-defined ring of matrices, and thus every group ring element has an associated matrix. This allows matrix algebra to be used as needed in the study and production of codes, enabling the creation of standard generator and check matrices. Group rings are a fruitful source of units and zero-divisors from which new codes result. Many code properties, such as being LDPC or self-dual, may be expressed as properties within the group ring thus enabling the construction of codes with these properties. The methods are general enabling the construction of codes with many types of group rings. There is no restriction on the ring and thus codes over the integers, over matrix rings or even over group rings themselves are possible and fruitful.

Citations (54)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.