Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Limitations on intermittent forecasting (0710.3773v1)

Published 19 Oct 2007 in math.PR, cs.IT, and math.IT

Abstract: Bailey showed that the general pointwise forecasting for stationary and ergodic time series has a negative solution. However, it is known that for Markov chains the problem can be solved. Morvai showed that there is a stopping time sequence ${\lambda_n}$ such that $P(X_{\lambda_n+1}=1|X_0,...,X_{\lambda_n}) $ can be estimated from samples $(X_0,...,X_{\lambda_n})$ such that the difference between the conditional probability and the estimate vanishes along these stoppping times for all stationary and ergodic binary time series. We will show it is not possible to estimate the above conditional probability along a stopping time sequence for all stationary and ergodic binary time series in a pointwise sense such that if the time series turns out to be a Markov chain, the predictor will predict eventually for all $n$.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.