Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Distributed spatial multiplexing with 1-bit feedback (0710.1522v1)

Published 8 Oct 2007 in cs.IT and math.IT

Abstract: We analyze a slow-fading interference network with MN non-cooperating single-antenna sources and M non-cooperating single-antenna destinations. In particular, we assume that the sources are divided into M mutually exclusive groups of N sources each, every group is dedicated to transmit a common message to a unique destination, all transmissions occur concurrently and in the same frequency band and a dedicated 1-bit broadcast feedback channel from each destination to its corresponding group of sources exists. We provide a feedback-based iterative distributed (multi-user) beamforming algorithm, which "learns" the channels between each group of sources and its assigned destination. This algorithm is a straightforward generalization, to the multi-user case, of the feedback-based iterative distributed beamforming algorithm proposed recently by Mudumbai et al., in IEEE Trans. Inf. Th. (submitted) for networks with a single group of sources and a single destination. Putting the algorithm into a Markov chain context, we provide a simple convergence proof. We then show that, for M finite and N approaching infinity, spatial multiplexing based on the beamforming weights produced by the algorithm achieves full spatial multiplexing gain of M and full per-stream array gain of N, provided the time spent "learning'' the channels scales linearly in N. The network is furthermore shown to "crystallize''. Finally, we characterize the corresponding crystallization rate.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.