Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 71 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 426 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fast Algorithm and Implementation of Dissimilarity Self-Organizing Maps (0709.3461v1)

Published 21 Sep 2007 in cs.NE and cs.LG

Abstract: In many real world applications, data cannot be accurately represented by vectors. In those situations, one possible solution is to rely on dissimilarity measures that enable sensible comparison between observations. Kohonen's Self-Organizing Map (SOM) has been adapted to data described only through their dissimilarity matrix. This algorithm provides both non linear projection and clustering of non vector data. Unfortunately, the algorithm suffers from a high cost that makes it quite difficult to use with voluminous data sets. In this paper, we propose a new algorithm that provides an important reduction of the theoretical cost of the dissimilarity SOM without changing its outcome (the results are exactly the same as the ones obtained with the original algorithm). Moreover, we introduce implementation methods that result in very short running times. Improvements deduced from the theoretical cost model are validated on simulated and real world data (a word list clustering problem). We also demonstrate that the proposed implementation methods reduce by a factor up to 3 the running time of the fast algorithm over a standard implementation.

Citations (57)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube