Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 159 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 175 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Likelihood ratios and Bayesian inference for Poisson channels (0709.1211v3)

Published 8 Sep 2007 in cs.IT, math.IT, math.ST, and stat.TH

Abstract: In recent years, infinite-dimensional methods have been introduced for the Gaussian channels estimation. The aim of this paper is to study the application of similar methods to Poisson channels. In particular we compute the Bayesian estimator of a Poisson channel using the likelihood ratio and the discrete Malliavin gradient. This algorithm is suitable for numerical implementation via the Monte-Carlo scheme. As an application we provide an new proof of the formula obtained recently by Guo, Shamai and Verdu\'u relating some derivatives of the input-output mutual information of a time-continuous Poisson channel and the conditional mean estimator of the input. These results are then extended to mixed Gaussian-Poisson channels.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.