Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Asymptotic improvement of the Gilbert-Varshamov bound for linear codes (0708.4164v1)

Published 30 Aug 2007 in cs.IT and math.IT

Abstract: The Gilbert-Varshamov bound states that the maximum size A_2(n,d) of a binary code of length n and minimum distance d satisfies A_2(n,d) >= 2n/V(n,d-1) where V(n,d) stands for the volume of a Hamming ball of radius d. Recently Jiang and Vardy showed that for binary non-linear codes this bound can be improved to A_2(n,d) >= cn2n/V(n,d-1) for c a constant and d/n <= 0.499. In this paper we show that certain asymptotic families of linear binary [n,n/2] random double circulant codes satisfy the same improved Gilbert-Varshamov bound.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube