Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

From Royal Road to Epistatic Road for Variable Length Evolution Algorithm (0707.0548v1)

Published 4 Jul 2007 in cs.NE

Abstract: Although there are some real world applications where the use of variable length representation (VLR) in Evolutionary Algorithm is natural and suitable, an academic framework is lacking for such representations. In this work we propose a family of tunable fitness landscapes based on VLR of genotypes. The fitness landscapes we propose possess a tunable degree of both neutrality and epistasis; they are inspired, on the one hand by the Royal Road fitness landscapes, and the other hand by the NK fitness landscapes. So these landscapes offer a scale of continuity from Royal Road functions, with neutrality and no epistasis, to landscapes with a large amount of epistasis and no redundancy. To gain insight into these fitness landscapes, we first use standard tools such as adaptive walks and correlation length. Second, we evaluate the performances of evolutionary algorithms on these landscapes for various values of the neutral and the epistatic parameters; the results allow us to correlate the performances with the expected degrees of neutrality and epistasis.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.