Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Joint universal lossy coding and identification of stationary mixing sources (0704.2644v1)

Published 20 Apr 2007 in cs.IT, cs.LG, and math.IT

Abstract: The problem of joint universal source coding and modeling, treated in the context of lossless codes by Rissanen, was recently generalized to fixed-rate lossy coding of finitely parametrized continuous-alphabet i.i.d. sources. We extend these results to variable-rate lossy block coding of stationary ergodic sources and show that, for bounded metric distortion measures, any finitely parametrized family of stationary sources satisfying suitable mixing, smoothness and Vapnik-Chervonenkis learnability conditions admits universal schemes for joint lossy source coding and identification. We also give several explicit examples of parametric sources satisfying the regularity conditions.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.