Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Note on the Inapproximability of Correlation Clustering (0704.2092v2)

Published 17 Apr 2007 in cs.LG and cs.DS

Abstract: We consider inapproximability of the correlation clustering problem defined as follows: Given a graph $G = (V,E)$ where each edge is labeled either "+" (similar) or "-" (dissimilar), correlation clustering seeks to partition the vertices into clusters so that the number of pairs correctly (resp. incorrectly) classified with respect to the labels is maximized (resp. minimized). The two complementary problems are called MaxAgree and MinDisagree, respectively, and have been studied on complete graphs, where every edge is labeled, and general graphs, where some edge might not have been labeled. Natural edge-weighted versions of both problems have been studied as well. Let S-MaxAgree denote the weighted problem where all weights are taken from set S, we show that S-MaxAgree with weights bounded by $O(|V|{1/2-\delta})$ essentially belongs to the same hardness class in the following sense: if there is a polynomial time algorithm that approximates S-MaxAgree within a factor of $\lambda = O(\log{|V|})$ with high probability, then for any choice of S', S'-MaxAgree can be approximated in polynomial time within a factor of $(\lambda + \epsilon)$, where $\epsilon > 0$ can be arbitrarily small, with high probability. A similar statement also holds for $S-MinDisagree. This result implies it is hard (assuming $NP \neq RP$) to approximate unweighted MaxAgree within a factor of $80/79-\epsilon$, improving upon a previous known factor of $116/115-\epsilon$ by Charikar et. al. \cite{Chari05}.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube